Google Guava Cache

范例

LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
        .maximumSize(1000)
        .expireAfterWrite(10, TimeUnit.MINUTES)
        .removalListener(MY_LISTENER)
        .build(
            new CacheLoader<Key, Graph>() {
                public Graph load(Key key) throws AnyException {
                    return createExpensiveGraph(key);
                }
        });

适用性

缓存在很多场景下都是相当有用的。例如,计算或检索一个值的代价很高,并且对同样的输入需要不止一次获取值的时候,就应当考虑使用缓存。

Guava Cache与ConcurrentMap很相似,但也不完全一样。最基本的区别是ConcurrentMap会一直保存所有添加的元素,直到显式地移除。相对地,Guava Cache为了限制内存占用,通常都设定为自动回收元素。在某些场景下,尽管LoadingCache 不回收元素,它也是很有用的,因为它会自动加载缓存。

通常来说,Guava Cache适用于:

- 你愿意消耗一些内存空间来提升速度。

- 你预料到某些键会被查询一次以上。

- 缓存中存放的数据总量不会超出内存容量。(Guava Cache是单个应用运行时的本地缓存。它不把数据存放到文件或外部服务器。如果这不符合你的需求,请尝试Memcached这类工具)

如果你的场景符合上述的每一条,Guava Cache就适合你。

如同范例代码展示的一样,Cache实例通过CacheBuilder生成器模式获取,但是自定义你的缓存才是最有趣的部分。

注:如果你不需要Cache中的特性,使用ConcurrentHashMap有更好的内存效率——但Cache的大多数特性都很难基于旧有的ConcurrentMap复制,甚至根本不可能做到。

加载

在使用缓存前,首先问自己一个问题:有没有合理的默认方法来加载或计算与键关联的值?如果有的话,你应当使用CacheLoader。如果没有,或者你想要覆盖默认的加载运算,同时保留"获取缓存-如果没有-则计算"[get-if-absent-compute]的原子语义,你应该在调用get时传入一个Callable实例。缓存元素也可以通过Cache.put方法直接插入,但自动加载是首选的,因为它可以更容易地推断所有缓存内容的一致性。

CacheLoader

LoadingCache是附带CacheLoader构建而成的缓存实现。创建自己的CacheLoader通常只需要简单地实现V load(K key) throws Exception方法。例如,你可以用下面的代码构建LoadingCache:

LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
        .maximumSize(1000)
        .build(
            new CacheLoader<Key, Graph>() {
                public Graph load(Key key) throws AnyException {
                    return createExpensiveGraph(key);
                }
            });

...
try {
    return graphs.get(key);
} catch (ExecutionException e) {
    throw new OtherException(e.getCause());
}

从LoadingCache查询的正规方式是使用get(K)方法。这个方法要么返回已经缓存的值,要么使用CacheLoader向缓存原子地加载新值。由于CacheLoader可能抛出异常,LoadingCache.get(K)也声明为抛出ExecutionException异常。如果你定义的CacheLoader没有声明任何检查型异常,则可以通过getUnchecked(K)查找缓存;但必须注意,一旦CacheLoader声明了检查型异常,就不可以调用getUnchecked(K)。

LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
        .expireAfterAccess(10, TimeUnit.MINUTES)
        .build(
            new CacheLoader<Key, Graph>() {
                public Graph load(Key key) { // no checked exception
                    return createExpensiveGraph(key);
                }
            });

...
return graphs.getUnchecked(key);

getAll(Iterable<? extends K>)方法用来执行批量查询。默认情况下,对每个不在缓存中的键,getAll方法会单独调用CacheLoader.load来加载缓存项。如果批量的加载比多个单独加载更高效,你可以重载CacheLoader.loadAll来利用这一点。getAll(Iterable)的性能也会相应提升。

注:CacheLoader.loadAll的实现可以为没有明确请求的键加载缓存值。例如,为某组中的任意键计算值时,能够获取该组中的所有键值,loadAll方法就可以实现为在同一时间获取该组的其他键值。校注:getAll(Iterable<? extends K>)方法会调用loadAll,但会筛选结果,只会返回请求的键值对。

Cache<Key, Graph> cache = CacheBuilder.newBuilder()
        .maximumSize(1000)
        .build(); // look Ma, no CacheLoader
...
try {
    // If the key wasn't in the "easy to compute" group, we need to
    // do things the hard way.
    cache.get(key, new Callable<Key, Graph>() {
        @Override
        public Value call() throws AnyException {
            return doThingsTheHardWay(key);
        }
    });
} catch (ExecutionException e) {
    throw new OtherException(e.getCause());
}

显式插入

使用cache.put(key, value)方法可以直接向缓存中插入值,这会直接覆盖掉给定键之前映射的值。使用Cache.asMap()视图提供的任何方法也能修改缓存。但请注意,asMap视图的任何方法都不能保证缓存项被原子地加载到缓存中。进一步说,asMap视图的原子运算在Guava Cache的原子加载范畴之外,所以相比于Cache.asMap().putIfAbsent(K, V),Cache.get(K, Callable) 应该总是优先使用。

This chapter requires login to view full content. You are viewing a preview.

Login to View Full Content

Course Curriculum

3

框架与 I/O:Spring、Netty 与 Web 容器

理解 Spring Boot 自动装配、AOP 与事务原理,掌握 Netty Reactor 模型及 Tomcat 连接处理机制,构建高内聚、易扩展的应用服务层。
4

高性能中间件:消息、缓存与存储

熟练运用 MySQL 索引/事务、Redis 缓存策略、Kafka/RocketMQ 消息可靠性,以及 ZooKeeper 分布式协调,搭建稳定、解耦的分布式数据底座。
6

云原生:容器化、可观测性与工程效能

通过 Docker/K8s 实现弹性部署,集成 Metrics/Logs/Traces 构建可观测体系,推动 DevOps 与自动化,让架构在云上持续交付与进化。