Flink 原理与实现

Flink 为流处理和批处理分别提供了 DataStream API 和 DataSet API。正是这种高层的抽象和 flunent API 极大地便利了用户编写大数据应用。不过很多初学者在看到官方 Streaming 文档中那一大坨的转换时,常常会蒙了圈,文档中那些只言片语也很难讲清它们之间的关系。所以本文将介绍几种关键的数据流类型,它们之间是如何通过转换关联起来的。下图展示了 Flink 中目前支持的主要几种流的类型,以及它们之间的转换关系。

DataStream

DataStream 是 Flink 流处理 API 中最核心的数据结构。它代表了一个运行在多个分区上的并行流。一个 DataStream 可以从 StreamExecutionEnvironment 通过 env.addSource(SourceFunction) 获得。

DataStream 上的转换操作都是逐条的,比如 map(),flatMap(),filter()。DataStream 也可以执行 rebalance(再平衡,用来减轻数据倾斜)和 broadcaseted(广播)等分区转换。

val stream: DataStream[MyType] = env.addSource(new FlinkKafkaConsumer08[String](...))
val str1: DataStream[(String, MyType)] = stream.flatMap { ... }
val str2: DataStream[(String, MyType)] = stream.rebalance()
val str3: DataStream[AnotherType] = stream.map { ... }

上述 DataStream 上的转换在运行时会转换成如下的执行图:

如上图的执行图所示,DataStream 各个算子会并行运行,算子之间是数据流分区。如 Source 的第一个并行实例(S1)和 flatMap() 的第一个并行实例(m1)之间就是一个数据流分区。而在 flatMap() 和 map() 之间由于加了 rebalance(),它们之间的数据流分区就有3个子分区(m1的数据流向3个map()实例)。这与 Apache Kafka 是很类似的,把流想象成 Kafka Topic,而一个流分区就表示一个 Topic Partition,流的目标并行算子实例就是 Kafka Consumers。

KeyedStream

KeyedStream 用来表示根据指定的 key 进行分组的数据流。一个 KeyedStream 可以通过调用 DataStream.keyBy() 来获得。而在 KeyedStream 上进行任何 transformation 都将转变回 DataStream。在实现中,KeyedStream 是把 key 的信息写入到了 transformation 中。每条记录只能访问所属 key 的状态,其上的聚合函数可以方便地操作和保存对应 key 的状态。

WindowedStream & AllWindowedStream

This chapter requires login to view full content. You are viewing a preview.

Login to View Full Content

Course Curriculum

3

框架与 I/O:Spring、Netty 与 Web 容器

理解 Spring Boot 自动装配、AOP 与事务原理,掌握 Netty Reactor 模型及 Tomcat 连接处理机制,构建高内聚、易扩展的应用服务层。
4

高性能中间件:消息、缓存与存储

熟练运用 MySQL 索引/事务、Redis 缓存策略、Kafka/RocketMQ 消息可靠性,以及 ZooKeeper 分布式协调,搭建稳定、解耦的分布式数据底座。
6

云原生:容器化、可观测性与工程效能

通过 Docker/K8s 实现弹性部署,集成 Metrics/Logs/Traces 构建可观测体系,推动 DevOps 与自动化,让架构在云上持续交付与进化。